Abstract

If a number of fiber-optic interferometric sensors are arranged so that their outputs are returned to the user via a common optical bus, then some method of distinguishing the returns from different sensors must be used to recover individual signals. One such method involves using light with a short coherence length, so that returns from different sensors will be mutually incoherent. The interferometric signal associated with each sensor can then be recovered via appropriate optical processing. The author considers sensors multiplexed using this technique and calculates their noise performance. It is found that for systems with only a few sensors, the minimum detectable phase is limited by the noise associated with incoherent interference; this can be minimized by using light with as short a coherence length as is practical. The maximum number of sensors that can be multiplexed is limited by optical power loss. A ladder topology is tentatively found to give the best performance.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.