Abstract

AbstractDNA sequence‐dependent three‐dimensional structure and mechanical deformability play a large role in biological processes such as protein–DNA interactions, nucleosome positioning, promoter identification, and drug–DNA recognition. On the important scale of 10–100 base pairs, models where DNA bases are represented by interacting rigid bodies have proved useful. We focus on a recently proposed rigid base model with nonlocal, harmonic interaction energy. We discuss the choice of internal coordinates and a method to obtain model parameters from coordinate fluctuations. Parameter transformation upon change of reference strand, coordinate constraints, and models with reduced number of degrees of freedom are described. Relation to traditional local harmonic models is clarified. We outline recent attempts to include anharmonic effects. A rigid base model of a DNA oligomer containing A‐tract is presented as an example. Perspectives of model development and application are discussed.This article is categorized under: Electronic Structure Theory > Density Functional Theory

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.