Abstract

Diffusion Magnetic Resonance Imaging (MRI) plays a very important role in studying biological tissue cellular structure and functioning both in health and disease. Proper interpretation of experimental data requires the development of theoretical models that connect the diffusion MRI signal to salient features of tissue microstructure at the cellular level. In this short review, we present some theoretical approaches to describing diffusion-attenuated magnetic resonance signals. These range from the models based on statistical properties of water molecules diffusing in the tissue- cellular environment, to models allowing exact analytical calculation of the magnetic resonance signal in a specific single-compartment environment. Such theoretical analysis gives important insights into mechanisms contributing to the formation of diffusion magnetic resonance signal and its connection to biological tissue cellular structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.