Abstract

Solar chimney as a reliable renewable energy system has been primarily utilized for building ventilation, but its application in the tunnel is rarely explored. This study develops theoretical models to predict the ventilation performance of vertical solar chimney in urban tunnel. Five temperature distribution types within the chimney cavity are analyzed, including uniform, vertically linear, horizontally semi-parabolic, two piecewise semi-parabolic in the depth direction, and three-dimensional parabolic profiles. The theoretical models consider the effect of chimney configuration, tunnel geometry, glazing materials, and solar radiation intensity on airflow rate through solar chimney. Validation against experimental data and numerical simulation shows that considering three-dimensional temperature distributions results in an average 11 % deviation from validation data, outperforming assumptions of uniform (29.3 % deviation) or lower-dimensional profiles. The volumetric flow rate through solar chimney exponentially decreased with h/w and h/d that the optimum ratio of h/d is 10. The airflow rate linearly increased with 0.14 power of glazing absorptivity. This analysis provides technical guidance for optimizing solar chimney design in tunnels, enhancing natural ventilation, and reducing energy consumption for mechanical ventilation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.