Abstract

Abstract In this work, a new model is developed by modifying the existing Maxwell–Wagner–Sillars (MWS) model to predict the gas separation properties of mixed matrix membranes (MMMs). The new modified MWS model, for the first time, provides the simultaneous exploration of the role of nanofillers/matrix interface voids and the exact geometrical shape of nanofillers in predicting the gas separation properties of MMMs. To unveil the crucial role of nanofillers/matrix interface voids, a mixed matrix membrane is considered a three-component system composed of the polymer matrix as the continuous component, nanofillers as the dispersed component and the interface voids between the two components. Moreover, the new model elucidates the role of the exact ellipsoidal shape of nanofillers within the membrane on the gas separation of MMMs by considering the shape factor of nanofillers. The newly developed modified MWS model is accurately able to predict the gas permeation of MMMs with a lower average absolute relative error (%AARE) of around 8% compared with the around 30% for conventional models such as the Maxwell model, Bruggeman model, Lewis–Nielsen model and Pal model and even compared with the modified Maxwell model (∼24%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.