Abstract

Among the several obstacles which impede efficiency enhancement of CZTS solar cells, the sub-optimized Mo back contact and the unfavorable conduction band offset at CZTS/CdS interface are the critical ones, contributing largely to high surface recombination and low open circuit voltage. In this article, a numerical simulation model was used for device structure analysis and performance optimization. A substrate configuration of CZTS solar cell was considered. Benchmarking study of the reference cell gives a conversion efficiency of 8.3% which matches well with the reported experimental value, validating the accuracy of our simulation model. Thereafter, we have implemented several modifications in the experimental device structure including an alternative back contact, a back surface passivation layer, a Cd-free buffer layer with tunable conduction band minimum, and a wide band gap ZnO-based alloy material which enhances the spectral response to shorter wavelength contributing to higher efficiency. A systematic optimization of device structure results in the increase of JSC and VOC due to the increment in diffusion length and optimal free carrier collection which ultimately increases the power efficiency from 8.4 to 20.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.