Abstract

An analytical model based on the various surface deposition processes and plasma sheath kinetics of the plasma species (electrons, positively charged ions, radicals, and neutrals) has been developed to investigate the effects of different plasmas (different etchants) on the catalyzed plasma aided growth of carbon nanofibers (CNFs). In particular, the model accounts the poisoning of the catalyst nanoparticle, i.e., the formation of the amorphous carbon layer on the catalyst active surface due to the continuous dissociation of incoming hydrocarbon species from the plasma. It is observed that oxidizers (H2O and O2) in the typical hydrocarbon/hydrogen (C2H2 + H2) plasma act as the dominant etchants and remove the amorphous carbon layer from the catalyst surface and, thus, preserve and enhance the catalyst activity. However, the growth rate of CNFs is much higher when O2 is added as an etchant in the reactive plasma as compared to H2O. This is due to the dual role played by the oxygen, i.e., (i) removal of amorphous carbon from the catalyst active surface, (ii) removal of hydrogen radicals that interact with the carbon species generated on the catalyst surface and suppress their diffusion through the catalyst nanoparticles. The CNF grows much longer in the presence of O2, therefore, etching of CNF tip and deformation of catalyst nanoparticle is the maximum, and hence, the CNF tip diameter is least. Moreover, in the present investigation, we also found that the relative concentrations of H2O or O2 species in the reactive plasma have significant effects on the CNF growth. Our theoretical results are in good agreement with the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call