Abstract

AbstractIn this paper, based on the molecular mechanics coupled with an atomistic‐based molecular mechanics theory, the equivalent elastic moduli of temperature‐dependence for single walled carbon nanotubes are analyzed. Under a hydrostatic pressure, two types of carbon nanotubes with the closed‐end and the open‐end are considered, respectively, and the difference between bulk modulus and transverse/radial modulus of these nanotubes is also assessed. The present results show that the bulk modulus and transverse modulus of single‐walled carbon nanotubes are very sensitive to the temperature and end states. Whether having end caps or not, the bulk modulus and radial modulus of carbon nanotubes vary with the external hydrostatic pressure, and they decrease with the increase of the tube diameter and the ambient temperature. However, the circumferential modulus increases with the increase of nanotube diameters. With the increase of temperatures, the bulk modulus and transverse modulus become insensitive to the diameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.