Abstract

The excellent vectoring characteristic of Dual Synthetic Jet (DSJ) provides a new control strategy for the active flow control, such as thrust vectoring control, large area cooling, separated flow control and so on. For incompressible flow, the influence relation of source variables, such as structure parameters of actuators, driving parameters and material attributes of piezoelectric vibrating diaphragm, on the vectoring DSJ and a theoretical model are established based on theoretical and regression analysis, which are all verified by numerical simulations. The two synthetic jets can be deemed as a main flow with a higher jet velocity and a disturbing flow with a lower jet velocity. The results indicate that the influence factors contain the low-pressure area formed at the exit of the disturbing flow, which could promote the vectoring deflection, and the impact effect of the disturbing flow and the suppressive effect of the main flow with the effect of restraining the vectoring deflection. The vectoring angle is a complex parameter coupled by all source variables. The detailed theoretical model, whose error is controlled within 3.6 degrees, can be used to quantitatively assess the vectoring feature of DSJ and thus to provide a guidance for designing the control law applied in the active flow control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call