Abstract

The elementary processes occurred in organic solar cell include optical absorption, excitation energy transfer, photoinduced charge transfer, charge transport, and charge collection at the electrodes. Even though modern quantum chemistry has achieved great success in electronic structure calculations, it is still not enough to describe these elementary processes at first-principles. We describe in this chapter our recent progresses toward quantitative theoretical understanding of the optical and electronic processes in organic photovoltaic materials, including optical absorption and emission spectra for conjugated oligomers, energy transfer in polymers, charge transport in organic semiconductors, and device modeling of heterojunction solar cells based on dynamic Monte Carlo simulation and the continuum model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call