Abstract

A theoretical model has been developed to examine the effect of substrate temperature on the growth of the conical carbon nanotube (CNT) tip assisted by the catalyst in a reactive plasma. The growth rate of the CNT with conical tip because of diffusion and accretion of ions on catalyst nanoparticle including the charging rate of the CNT, kinetics of plasma species, and the evolution of the substrate temperature in reactive plasma has been taken into account. The effect of substrate temperature for different ion densities and temperatures on the growth of the conical CNT tip has been investigated for typical glow discharge plasma parameters. The results of the present model can serve as a major tool in better understanding of plasma heating effects on the growth of CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call