Abstract

Recently, we have proposed a spin quantum cross structure (SQCS) device toward the realization of novel switching devices. The SQCS device consists of two ferromagnetic metal thin films with their edges facing each other at an angle of θ, and sandwiches a few molecules and atoms. In this paper, the calculation of electronic transport has been performed for SQCS devices with the Ni noncollinear magnetic films as both electrodes within the framework of the Anderson Hamiltonian, taking into consideration both polar angle θ, and azimuthal angle ϕ. We have obtained the general noncollinear spin transport formula, and the polar angle dependence of current-voltage characteristics of SQCS devices. The noncollinear spin transport is determined only by the angle θ defined by the inner product of two spins. Also, it is implied that SQCS devices can serve as multivalued memory devices by varying the angle θ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.