Abstract

ABSTRACTLi/S batteries have received too much attention due to their considerable theoretical energy density suitable for high energy applications. Here, we study the consequences of the SEI layer on internal resistance of the single battery cell due to polysulfide (PS) shuttling. The growth in resistance is related to the capacity fading of the cell. Using a model of series resistors, the total internal ionic resistance over cycling performance is expressed and compared for various nanostructured cathodes at different rates. It has been shown that SEI layer is the most significant factor in increasing of ionic resistance at the beginning of the battery aging, while electrode degradation and other phenomena are dominating resistance rise over higher cycles. We also demonstrate that cathodes with smaller equivalent porosity represent an excellent performance in preventing internal resistance enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.