Abstract

Theoretical simulation of the ν s stretching band is presented for benzoic acid and its OD derivative at 300 K. The simulation takes into account an adiabatic coupling between the high-frequency O–H(D) stretching and the low-frequency intermolecular O⋯O stretching modes, linear and quadratic distortions of the potential energy for the low-frequency vibrations in the excited state of the O–H(D) stretching vibration, resonance interaction between the two hydrogen bonds in the dimer, and Fermi resonance between the fundamental ν OH(D) stretching and the overtone of the δ O–H(D) bending vibrations. Infrared, far-infarared, Raman and low-frequency Raman spectra of the polycrystalline benzoic acid and its deuterated form have been measured. The geometry and experimental frequencies are compared with the results of our B3LYP/6-311++G** and B3LYP/cc-pVTZ calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.