Abstract
In previous work, we focused on the optimal therapeutic strategy with a pair of drugs which are collaterally sensitive to each other, that is, a situation in which evolution of resistance to one drug induces sensitivity to the other, and vice versa. Yoona (Bull Math Biol 8:1-34,Yoon etal. 2018) Here, we have extended this exploration to the optimal strategy with a collaterally sensitive drug sequence of an arbitrary length, N. To explore this, we have developed a dynamical model of sequential drug therapies with N drugs. In this model, tumor cells are classified as one of N subpopulations represented as [Formula: see text]. Each subpopulation, [Formula: see text], is resistant to '[Formula: see text]' and each subpopulation, [Formula: see text] (or [Formula: see text], if [Formula: see text]), is sensitive to it, so that [Formula: see text] increases under '[Formula: see text]' as it is resistant to it, and after drug-switching, decreases under '[Formula: see text]' as it is sensitive to that drug(s). Similar to our previous work examining optimal therapy with two drugs, we found that there is an initial period of time in which the tumor is 'shaped' into a specific makeup of each subpopulation, at which time all the drugs are equally effective ([Formula: see text]). After this shaping period, all the drugs are quickly switched with duration relative to their efficacy in order to maintain each subpopulation, consistent with the ideas underlying adaptive therapy. West(Canver Res 80(7):578-589Gatenby etal. 2009) and Gatenby (Cancer Res 67(11):4894-4903West etal. 2020). Additionally, we have developed methodologies to administer the optimal regimen under clinical or experimental situations in which no drug parameters and limited information of trackable populations data (all the subpopulations or only total population) are known. The therapy simulation based on these methodologies showed consistency with the theoretical effect of optimal therapy .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.