Abstract
In the Chap. 2, we discussed the pure rarefied gas effects on aeroheating of sharpened leading edges of vehicles, assuming that the real gas effects are relatively unimportant. Afterwards, in the Chap. 3, we discussed the pure nonequilibrium real gas effects on flows behind strong normal shock waves. Since there is no characteristic scale of the macroscopic post-shock flow, the rarefied gas effects do not appear. In this chapter, we deal with the nonequilibrium real gas effects on the flow and heat transfer along the stagnation streamline toward a slightly blunted nose. In this flow problem is involved three characteristic length (or time) scales, i.e., the characteristic scale of the macroscopic flow, the characteristic nonequilibrium scale of the chemical reaction, and the MFP of molecules in the gas flow. Thus, it is probable that the rarefied gas effects and the nonequilibrium real gas effects arise simultaneously, and the coupling effects between them could also be significant, which makes it more difficult to understand the complex flow and heat transfer mechanism and to predict the aeroheating performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.