Abstract

Fiber metal laminates have been widely used as the primary materials in aircraft panels, and have excellent specific strength. Bending deformation is the most common loading mode of such components. An accurate theoretical predictive model for the bending process for the carbon reinforced aluminum laminates is of great significance for predicting the actual stress response. In this paper, based on the metal-plastic bending theory and the modified classical fiber laminate theory, a modified bending theory model of carbon-fiber-reinforced aluminum laminates was established. The plastic deformation of the thin metal layer in laminates and the interaction between fiber and metal interfaces were considered in this model. The bending strength was predicted analytically. The FMLs were made from 5052 aluminum sheets, with carbon fibers as the reinforcement, and were bonded and cured by locally manufacturers. The accuracy of the theory was verified by three-point bending experiments, and the prediction error was 8.4%. The results show that the fiber metal laminates consisting of three layers of aluminum and two layers of fiber had the best bending properties. The theoretical model could accurately predict the bending deformation behaviors of fiber metal laminates, and has significant value for the theoretical analysis and performance testing of laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call