Abstract

AbstractTo comprehensively describe the size and strain rate dependent yield strength of monocrystalline ductile materials, a theoretical model was established based on the dislocation nucleation mechanism. Taking Ni3Al as an example, the model firstly fits results of molecular dynamics simulations to extract material dependent parameters. Then, a theoretical surface of yield strength is constructed, which is finally verified by available experimental data. The model is further checked by available third part molecular dynamics and experimental data of monocrystalline copper and gold. It is shown that this model can successfully leap over the huge spatial and temporal scale gaps between molecular dynamics and experimental conditions to get the reliable mechanical properties of monocrystalline Ni3Al, copper and gold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.