Abstract

The Mpemba effect is the phenomenon in which the system with high initial temperature cools faster than the system with low initial temperature when all other conditions are the same. A theoretical model of the Mpemba effect through the canonical first-order phase transition is proposed in this paper, which shows that in the cooling processes, the path of the first-order phase transition of the system with the high initial temperature does not pass through any metastable state, while the path of the first-order phase transition of the system with the low initial temperature passes through a metastable state, which leads to the occurrence of the Mpemba effect. Then an example of the theoretical model is given in the Blume-Emery-Griffiths model. The Monte Carlo algorithm is adopted to calculate the estimated times for both systems with different initial temperature to cool down and undergo a first-order phase transition. The simulation results demonstrate a Mpemba effect in the system. Moreover, the evolution paths of the first-order phase transitions of the systems with high and low initial temperatures are given, respectively. The theoretical model presented here may help explain the Mpemba effect in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call