Abstract

Temperature prediction is a fundamental aspect of material workability and microstructural evolution. The need to predict temperatures is particularly important for processes where temperature is not a fixed a priori as well as in processes where temperature is affected by multiple variables. Incremental Sheet Forming (ISF) is one such process and it is considered particularly relevant in this discussion because the process parameters chosen are the ones that most affect temperature variation in the forming area. The aim of this paper is to define a temperature prediction model based on mathematical formulae. This model can be used to predict the temperature of the material during the forming phase using different process parameters. Two lightweight alloys with different thermal properties were studied. An aluminium and a titanium were chosen because their differences guarantee the generality of the model. Experimental tests were performed to calibrate and validate the quality of the proposed model. An iterative algorithm was implemented to predict the temperature trend of the sheet. Satisfactory results have been found confirming the physical hypothesis made to justify the phenomenon of temperature increase in ISF as well as the reliability of temperature prediction during the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.