Abstract

We theoretically analyzed the interaction between surface water waves and a thin muddy seabed. Wave motion in the inviscid water layer was assumed to be irrotational and the soft mud was modeled as a linear viscoelastic fluid. Under the Boussinesq approximation for nonlinear long waves, we present a set of depth-integrated equations that can be solved for the depth-averaged horizontal water particle velocity and the free-surface displacement. The long wave model needs to be solved numerically in general. For the cases of linear progressive waves and solitary waves, further analytical solutions were obtained. The model-predicted wave amplitude attenuation rate was shown to reasonably agree with the field data. Our analysis suggests that the elasticity of mud can potentially enhance the wave damping efficiency of a muddy seabed. The present formulations generalize several existing linear and nonlinear models for the wave–mud problem reported in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.