Abstract

Metal–organic frameworks (MOFs) have recently attracted considerable attention as new nanoporous materials with applications to separation of fluid mixtures, catalysis, gas capture and storage, and drug delivery. A subclass of MOFs, the MIL-53 (with Al or Cr) family, exhibits a complex structural phase transition, often referred to as the breathing transition, which occurs when gas molecules are adsorbed in its pore space. In this phenomenon, the material morphology oscillates between two distinct phases, usually referred to as the narrow-pore (np) and large-pore (lp) phases. We describe a statistical mechanical model based on the energetics of the system that couples the adsorbates with the host and the ensuing structural deformation of the materials. The Hamiltonian of the system consists of the elastic energy of the MOF, the fluid phase energy, and the interaction energy between the gas and MOFs. Minimizing the total energy with respect to both the gas density and the displacement field in the material...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call