Abstract
This paper presents a computational procedure to evaluate the shear strength contribution provided to a reinforced concrete (RC) beam by a system of near-surface mounted (NSM) fiber reinforced polymer (FRP) strips. This procedure is based on the evaluation of (1) the constitutive law of the average-available bond-length NSM FRP strip effectively crossing the shear crack, and (2) the maximum effective capacity it can attain during the loading process of the strengthened beam. Because of complex phenomena such as (1) interaction between forces transferred through bond to the surrounding concrete and the concrete fracture, and (2) interaction among adjacent strips, the NSM FRP strip constitutive law is largely different than the linear elastic one characterizing the FRP behavior in tension. Once the constitutive law of the average-available bond-length NSM strip is reliably known, its maximum effective capacity can be determined by imposing a coherent kinematic mechanism. The self-contained and ready-to-impl...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.