Abstract
In recent years, theoretical studies have moved from a traditionally supporting role to a more proactive role in the research of phase transitions at high pressures. In many cases, theoretical prediction leads the experimental exploration. This is largely owing to the rapid progress of computer power and theoretical methods, particularly the structure prediction methods tailored for high-pressure applications. This review introduces commonly used structure searching techniques based on static and dynamic approaches, their applicability in studying phase transitions at high pressure, and new developments made toward predicting complex crystalline phases. Successful landmark studies for each method are discussed, with an emphasis on elemental solids and their behaviors under high pressure. The review concludes with a perspective on outstanding challenges and opportunities in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.