Abstract

Methyltrioxorhenium (MTO)-catalyzed transfer of a methylene group to styrene has been computationally found to preferably follow a stepwise mechanism to give phenylcyclopropane via formation of a pseudo-metallacyclic intermediate and subsequent alkylative cyclization. The present result serves as the first theoretical evidence for d0 transition metal mediated transfer of methylene as a terminal form rather than a metal carbene or carbenoid fashion, accompanied by the cleavage of a H2C═O double bond. The mechanism presented here is in contrast to the carbenoid or metal carbene promoted methylene transfer and to the MTO-catalyzed isoelectronic atom (group) transfer in MeRe(O)2(η2-O–NH) or MeRe(O)2(η2-O–O). This study not only enriches the chemistry of olefin cyclopropanation and the MTO-catalyzed group (atom) transfer event but also sheds new light on the reaction chemistry of formaldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.