Abstract

When humans interact with intelligent systems, their causal responsibility for outcomes becomes equivocal. We analyze the descriptive abilities of a newly developed responsibility quantification model (ResQu) to predict actual human responsibility and perceptions of responsibility in the interaction with intelligent systems. In two laboratory experiments, participants performed a classification task. They were aided by classification systems with different capabilities. We compared the predicted theoretical responsibility values to the actual measured responsibility participants took on and to their subjective rankings of responsibility. The model predictions were strongly correlated with both measured and subjective responsibility. Participants’ behavior with each system was influenced by the system and human capabilities, but also by the subjective perceptions of these capabilities and the perception of the participant's own contribution. A bias existed only when participants with poor classification capabilities relied less than optimally on a system that had superior classification capabilities and assumed higher-than-optimal responsibility. The study implies that when humans interact with advanced intelligent systems, with capabilities that greatly exceed their own, their comparative causal responsibility will be small, even if formally the human is assigned major roles. Simply putting a human into the loop does not ensure that the human will meaningfully contribute to the outcomes. The results demonstrate the descriptive value of the ResQu model to predict behavior and perceptions of responsibility by considering the characteristics of the human, the intelligent system, the environment, and some systematic behavioral biases. The ResQu model is a new quantitative method that can be used in system design and can guide policy and legal decisions regarding human responsibility in events involving intelligent systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.