Abstract

Low-energy structure of the dark-matter detector nuclei 71Ga, 73Ge and 127I has been studied by using the nuclear shell model. The calculations have been done in realistic model spaces by using renormalized microscopic two-body interactions. The resulting ground states have been used to calculate theoretical predictions for detection rates of the lightest supersymmetric particle (LSP) in experiments studying elastic scattering of the LSP’s from atomic nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.