Abstract

This work presents a new method to compute time and wavelength dependent center-to-limb brightness distributions for Classical Cepheids. Our model atmospheres are based on second-order accurate 1-D hydrodynamic calculations, performed in spherical geometry. The brightness intensity distributions, and the resulting limb darkening, are computed through the dynamic atmospheres by using a full set of atomic and molecular opacities. Our results confirm important differences with respect to equivalent hydrostatic models. The amount of limb darkening, and the shape of the limb profiles, show a strong dependence on the pulsational phase of the Cepheid, which cannot be reproduced by static models. Non-linear effects in our hydrodynamic equations add a new level of complexity in the wavelength dependence of our limb profiles, which are affected by the presence of shock-waves traveling through the atmosphere. These effects, already detectable by present-day interferometers, should be taken into consideration when deriving limb darkened diameters for nearby Cepheids with the accuracy required to measure their radial pulsations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.