Abstract
The hypothetical impact of aerial spraying on tsetse fly populations is investigated. Spray cycles are scheduled at intervals two days short of the first interlarval period and halted once the last of the female flies that originated from pre-spray-deposited pupae have been sprayed twice. The effect of temperature on the aerial spraying of tsetse, through its reproductive cycle and general population dynamics, is of particular interest, given that cooler weather is preferred for the settling of insecticidal droplets. Spray efficacy is found to come at a price due to the greater number of cycles necessitated by cooler weather. The extra cost is argued to be worth while. Pupae, still in the ground at the end of spraying, are identified as the main threat to a successful operation. They are slightly more vulnerable at the low temperature extreme of tsetse habitat (16°C), when the cumulative, natural pupal mortality is high. One can otherwise base one's expectations on the closeness with which the time to the third last spray approaches one puparial duration. A disparity of anything close to the length of a spray cycle advocates caution, whereas one which comes close to vanishing should be interpreted as being auspicious. Three such key temperatures, just below which one can anticipate an improved outcome and just above which caution should be exercised, are 17.146°C, 19.278°C and 23.645°C. A refinement of the existing formulae for the puparial duration and the first interlarval period might be prudent in the South African context of a sympatric Glossina brevipalpis–Glossina austeni, tsetse population. The resulting aerial spraying strategy would then be formulated using a G. brevipalpis puparial duration and a G. austeni first interlarval period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.