Abstract

The resonantly-stabilized cyclopentadienyl radical (C5H5) is a key species in the combustion and molecular growth kinetics of mono and poly-aromatic hydrocarbons (M/PAHs). At intermediate-to-low temperatures, the C5H5 reaction with the hydroperoxyl radical (HO2) strongly impacts the competition between oxidation to smaller products and growth to PAHs, precursors of soot. However, literature estimates for the HO2 + C5H5 reaction rate are inaccurate and inconsistent with recent theoretical calculations, thus generating discrepancies in global combustion kinetic models. In this work, we perform state-of-the-art theoretical calculations for the HO2 + C5H5 reaction including variable reaction coordinate transition state theory for barrierless channels, accurate thermochemistry, and multi-well master equation (ME) simulations. Contrary to previous studies, we predict that OH + 1,3-C5H5O is the main reaction channel. The new rate constants are introduced in two literature kinetic models exploiting our recently developed ME based lumping methodology and used to perform kinetic simulations of experimental data of MAHs oxidation. It is found that the resonantly-stabilized 1,3-C5H5O radical is the main C5H5O isomer, accumulating in relevant concentration in the system, and that the adopted lumping procedure is fully consistent with results obtained with detailed kinetics. The reactivity of C5H5O with OH and O2 radicals is included in the kinetic mechanisms based on analogy rules. As a result, C5H5O mostly reacts with O2 producing smaller C3/C4 species and large amounts of C5H4O, suggesting that further investigations of the reactivity of both C5H5O and C5H4O with oxygenated radicals is necessary. Overall, this work presents new reliable rate constants for the HO2 + C5H5 reaction and provides indications for future investigations of relevant reactions in the sub-mechanisms of cyclopentadiene and MAH oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call