Abstract

Cadmium (Cd) isotopes are an important tool to better understand the inorganic and organic geochemistry of Cd. Organic ligands play a key role to control the toxicity and mobility of Cd in living organisms and also in terrestrial and aquatic environments. Therefore, knowledge of the equilibrium isotope fractionation of Cd with organic ligands is crucial to further advance Cd isotope source and process tracing in the field of biogeochemistry. In this study, we calculated reduced partition function ratios (103lnβ) of Cd isotopes in various organic Cd complexes by density functional theory. The calculations revealed that the 103lnβ of 114Cd/110Cd for these complexes decreased in the order of Cd(Hcit)(H2cit)− > Cd(cit)(H2O)3− > CdH(cit)(H2O)4 > CdEDTA > Cd(his)2H2O > Cd(cit)24− ≈ Cd(H2O)62+ > Cd(H2O)42+ > Cd(cys)(H2O)32+ > Cd(GS)2(H2O)22− > Cd(DMPS)(H2O)2− > Cd(DMPS)24− at 0–100 °C. In general, heavier Cd isotopes preferably bind to oxygen and nitrogen donor atoms while lighter Cd isotopes bind to sulfur donor atoms of organic ligands. Thus, the previously observed immobilization of light Cd isotopes in living organisms could be related to Cd detoxification processes with sulfur. The predicted equilibrium isotope fractionation will strengthen Cd isotopes as a process tracing tool in living organisms and will improve the understanding of Cd isotope cycling in aquatic and terrestrial systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.