Abstract

The coordination and bonding of equatorial hydroxide, carbonyl, cyanide (CN-), and isocyanide (NC-) ligands with uranyl dication, [UO2]2+, has been studied using density functional theory with relativistic effective core potentials. Good agreement is seen between experimental and calculated geometries of [UO2(OH)4]2-. Newly predicted ground-state structures of [UO2(OH)5]3-, [UO2(CO)4]2+, [UO2(CO)5]2+, [UO2(CN)4]2-, [UO2(CN)5]3-, [UO2(NC)4]2-, and [UO2(NC)5]3- are reported. Four-coordinate uranyl isocyanide complexes are the predicted gas-phase species while five-coordinate uranyl cyanide complexes are energetically favorable in aqueous solution. Small energy differences between cyanide and isocyanide complexes indicate the energetic feasibility of mixed cyanide and isocyanide complexes. A D2d uranyl tetrahydroxide is the dominant gas-phase and aqueous species, but formation of uranyl carbonyl complexes is seen to be exothermic in the gas-phase and endothermic in aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.