Abstract

Abstract The potential energy functions of the electronic ground state, as well as the lowest n π ∗ and ππ ∗ excited singlet states of 3-hydroxy-4-pyridinone and 3-hydroxy-2-methyl-4-pyridinone, have been theoretically investigated along the proton transfer (PT) reaction coordinate. The full geometry optimization has been performed along the PT reaction path. In the geometry optimization, the Hartree-Fock approximation and the configuration interaction scheme with single excitations have been employed. The energy calculations at the optimized geometries have been performed with the complete-active space self-consistent field (CASSCF) method followed by second-order perturbation theory calculations, employing the CASSCF wave function as the reference. We found that the near-degeneracy between the ππ ∗ and n π ∗ excited singlet states, which is removed upon methyl substitution, might be the factor which differentiates the two systems with respect to the excited state intramolecular PT reaction. A simple vibrational model has been proposed for investigation of the dynamics of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call