Abstract
AbstractIn order to further explore the detailed reaction mechanism of carbon dioxide activated by [Re(CO)2]+ complex, CCSD(T) methods was performed to determine related potential energy surface (PES). Crossing point is determined by using a partially optimized method. The result shows that larger spin‐orbital coupling (155.37 cm−1) and intersystem crossing probabilities in spin‐forbidden region causes the electron to spin flip at the minimum energy crossing point and access to the lower singlet PES. Nonadiabatic rate constant k is estimated to be quite rapid, so transition state (1TS1) is rate‐controlled steps. In addition, the electronic structure of oxygen‐atom transfer process is further analyzed by localized molecular orbital and Mayer bond order. The analysis finds that the form of main bonding orbital is the electron contribution from the p(O) in CO2 to the empty d(Re) orbital.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.