Abstract

We investigate the feasibility of carrying out quantum walks with cold atoms in a double optical lattice. Monte Carlo simulations of time-of-flight (TOF) detection and absorption imaging were carried out, focusing on a specific experimental implementation. These indicate that absorption imaging would be best suited for detection of quantum walks. With typical experimental parameters a few hundred quantum walk steps will be needed for an unambiguous detection of the quantum walk signature. We show that in special cases, few-step quantum walks can also be detected in our system if one measures the relative population of the atoms in their internal states rather than their displacement in space, that is, measurements are made in the space of the coin operator rather than in that of the displacement operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.