Abstract
The structural, elastic and electronic properties of NiTiSn and CoVSn half-Heusler compounds have been calculated using the full-potential linear muffin-tin orbital (FP-LMTO) method. The computed equilibrium lattice constants are in excellent agreement with the available experimental and theoretical data. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, Lamé's coefficients, sound velocities and the Debye temperature) were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij and their related parameters. The electronic band structure calculations show that the conduction band minimum (CBM) is located at the X point for both compounds, whereas the valence band maximum (VBM) is located at the Г point for NiTiSn and at the L point for CoVSn, resulting in indirect energy band gaps of 0.46 and 0.75eV for NiTiSn and CoVSn, respectively. The pressure and volume dependences of the energy band gaps have been calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.