Abstract
The deficiencies of common ab initio methods for the reliable prediction of the equilibrium structures of compounds composed of only the fluorine, oxygen and nitrogen atoms are investigated. Specifically, the importance of using large one-particle basis sets with multiple sets of polarization functions has been studied. Additionally, the need for a set of f basis functions was investigated. Several different single reference electron correlation methods have been tested in order to determine whether it is possible for a single reference based method to be routinely used on such chemical systems. These electron correlation methods include second order Moller-Plesset perturbation theory (MP2), singles and doubles configuration interaction (CISD), the coupled pair functional (CPF) approach and singles and doubles coupled cluster (CCSD) theory. The molecular systems studied include difluoroperoxide (FOOF), the cis form of the NO dimer, cis and trans difluorodiazene (FNNF) and the transition state to interconversion of the cis and trans isomers of FNNF. To the best of our knowledge, this is the first time that the cis-trans isomerization transition state has been reported. At the highest level of theory employed, the equilibrium structures of cis and trans FNNF agree very well with the experimental structures. However, the barrier to interconversion is predicted to be 65 kcal/mole, which is substantially higher than the experimental activation energy of 32 kcal/mole. Potential sources of error are discussed. A new diagnostic method for determining a priori the reliability of single reference based electron correlation methods is suggested and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.