Abstract

The density functional theoretical (DFT) computations were performed at the B3LYP/6-311G++(d, p) level to calculate the equilibrium geometry, vibrational wave numbers, intensities, and various other molecular properties of brucine and strychnine, which were found in satisfactory agreement with the experimental data. The out-of-phase stretching modes of aromatic rings and carbonyl stretching modes in combination with CH stretching modes at stereogenic centers generate VCD signals, which are remarkably efficient configuration markers for these chiral molecular systems. NBOs analysis reveals that the large values of second order perturbation energy (47.24kcal/mol for brucine and 46.93kcal/mol for strychnine) confirms strong hyperconjugative interaction between the orbital containing the lone pair of electron of nitrogen and the neighboring CO antibonding orbital. The molecular electrostatic potential map of strychnine molecule, with no polar groups other than the lone keto group, shows less polarization, which accounts for its lower susceptibility towards electrophilic attack as compared to brucine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call