Abstract

High-level ab initio computations have been performed to investigate molecular structures, potential energy curves, vibrational energy levels and spectroscopic constants for twelve Λ-S states of the first four dissociation limits of MgBi. Characterizations of seven Ω states, corresponding to the first and the second Λ-S dissociation limits, have been explored for the first time. The spin–orbit coupling effect is revealed to have introduced a significant impact on the pattern of these electronic states and interactions among them. Our predictions for molecular structures and spectroscopic constants of MgBi are compared with available data of other magnesium-group 18 family species. Regular tendencies of these parameters are clearly exhibited when the group 18 atom is replaced by another one in the group. Information associated with transition dipole moments, Franck-Condon factors, vibrational branching ratios and radiative lifetimes between the Ω states are obtained and their transitional properties are analyzed and discussed. The results and data determined in this work are expected to guide and assist laboratorial detections of MgBi and to extend our understanding for the magnesium-group 18 species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.