Abstract

In this study, theoretical analysis on the geometries and electronic properties of various conjugated oligomers based on thiophene (Th) or bicyclic non-classical Th units is reported. The dihedral angle, bond length, bond-length alternation, bond critical point (BCP) properties, nucleus-independent chemical shift (NICS) and Wiberg bond index (WBIs) are analysed and correlated with conduction properties. The changes of bond length, BCP properties, NICS and WBIs all show that the conjugational degree is increased systematically with main chain extension. As a result, the highest occupied molecular orbital–lowest unoccupied molecular orbital energy separation (E g) is decreased upon chain elongation. The E g of oligomers based on bicyclic non-classical Th unit is much lower than that of Th-based oligomers due to the narrower E g of bicyclic non-classical Ths compared to Th, which indicates that the narrow E g of the bicyclic non-classical Ths can be carried over to their polymers by using them as building blocks for the polymers. The band structures and density of states analysis show that the four polymers all have small band gap ( < 0.9 eV), wide highest occupied bandwidth and relatively small effective mass of hole, which indicate that those proposed polymers may be potential conductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call