Abstract

The potential of zero free charge (PZFC) value is a crucial parameter in electrochemistry. However, the evaluations of PZFC have traditionally been difficult. To overcome this challenge, we applied a hybrid solvation method that incorporates, both an explicit water layer next to the metal surface and an implicit water layer, combined with density functional theory (DFT) to simplify the PZFC evaluation. Using the (111) and (100) surfaces of Group 10 and 11 metals as model systems, we calculated their PZFC values, which showed excellent agreement with the reported data. This great match validates the accuracy and reliability of our theoretical approach. Notably, we observed that the surface structure and the orientation of water molecules have a significant influence on the PZFC values of the metals. Our study, therefore, paves the way for efficiently and accurately calculating the PZFC values of materials, which can greatly benefit their practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call