Abstract

The interaction energies of the dimethylsulfide–methanol (I) and dimethylthiocarbonyl–methanol (II) complexes are calculated as a function of the S⋯H–O distances at various levels of theory and compared to those of their oxygen analogs. At the coupled cluster level the binding energy of (I) is −5.46 kcal/mol, only slightly smaller than the hydrogen bond energy of −5.97 kcal/mol for the corresponding oxygen analog, i.e., the dimethylether–methanol complex. It is also considerably larger than for dimethylether–methylthiol, where S and O of the parent complex are interchanged. Density functional theory is unable to describe these weak interactions properly. Choosing second-order Møller–Plesset perturbation theory, the interaction potential surfaces of both complexes with respect to the three relevant intermolecular coordinates are compared. The interactions in the hydrogen bonds involving sulfur are classified by Morokuma, atoms-in-molecules, and natural bond orbital analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.