Abstract

Understanding the water oxidation process on small metal oxide complexes is fundamental for developing photocatalysts for solar fuel production. Titanium oxide and manganese oxide complexes have high potential as components of a cheap, nontoxic, and stable photocatalyst. In this theoretical work, the water oxidation process on Mn(x)Ti(2-x)O4 (x = 0-2) clusters is investigated at the BP86 level of theory using two water molecules and fully saturated systems. In the oxidation cycle using two water molecules, Mn reduces the reaction energy; however, Mn does not reduce the reaction energy on the fully saturated system. When two water molecules are used, the highest reaction energy in the water oxidation cycle is lower than 3 eV, but the highest reaction energy is higher than 3 eV on fully saturated systems except for the pure titanium oxide complex which has a highest reaction energy of 2.56 eV. Dehydrogenation processes in the water oxidation cycle require higher energy than the O-O formation or water adsorption processes. The overall dehydrogenation energy is usually smaller on complexes including at least one Mn atom and it is smallest on the Mn2O4 complex that has two water molecules. Considering the highest reaction energy in the overall water oxidation cycle, water oxidation at the manganese atom of MnTiO4 hydrated with two water molecules is the most favorable in energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.