Abstract

This paper describes ab initio electronic structure calculations on the planar transition states of 2-chloropropene leading to HCI elimination in the ground electronic state to form either propyne or allene as the cofragment. The calculations provide optimized geometries of the transition states for these two reaction channels, together with vibrational frequencies, barrier heights, and reaction endothermicities. The calculated barrier heights for the two distinct four-centre HCI elimination transition states, one leading to HCI and propyne and the other leading to HCI and allene, are 72.5kcalmol−1 (77.8kcalmol−1 without zero-point correction) and 73.2kcalmol−1 (78.7kcalmol−1) at the MP2/6-311G(d, p) level, 71.Okcalmol−1 (76.3kcalmol−1) and 70.5kcalmol−1 (76.0kcalmol−1) at the QCISD(T)/6-311 +G(d, p)//MP2/6-311G(d, p) level, and 66.9kcalmol−1 (71.7kcalmol−1) and 67.3kcalmol−1 (72.1kcalmol1) at the G3//B3LYP level of theory. Calculated harmonic vibrational frequencies at the B3LYP/6-31G(d) level along with transition state barrier heights from the G3//B3LYP level of theory are used to obtain RRKM reaction rate constants for each transition state, which determine the branching ratio between the two HCI elimination channels. Even at internal energies well above both HCI elimination barriers, the HCI elimination leading to propyne is strongly favoured. The smaller rate constant for the HCI elimination leading to allene can be attributed to the strong hindrance of the methyl rotor in the corresponding transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.