Abstract

The electronic, structural, mechanical, lattice dynamics and the electronic transport properties of ACuO2(A = K, Rb and Cs) are investigated using density functional theory. The calculated elastic constants and their related elastic moduli, phonon spectra and electronic transport properties of these compounds are reported here for the first time. The predicted structural parameters are in excellent agreement with the available experimental data. The obtained lattice thermal conductivities, κL, of ACuO2 (A = K, Rb and Cs) are found to display strong anisotropic features along the a, b and c directions. It is also found that the average room-temperature κL of CsCuO2 is lower than those of RbCuO2 and KCuO2, which is due to its smaller group velocities in the low frequency region i.e., 0 ~ 3 THz. Our calculations also show that the acoustic phonon modes contribute considerably to the total κL along the a and b directions. The electrical conductivity (σ) and electronic thermal conductivity (κel) of ACuO2 (A = K, Rb and Cs) show anisotropic features i.e., σ and κel along the c-axis is significantly larger than along the a and b-axes. Meanwhile, our obtained Seebeck coefficient (S) values are found to be 248, 110 and 91 μV/K for p-doped KCuO2, p-doped RbCuO2 and p-doped CsCuO2 respectively at 300 K along the b-direction. These S values are found to be of the same order of magnitude with that of well known thermoelectric (TE) material, Bi2Te3 (with S of 200 μV/K at 300 K) and the recently discovered metal oxide TE material, NaCo2O4 (with S of 100 μV/K at 300 K). However, our computed figure of merit (ZT) values of ACuO2 (A = K, Rb and Cs) are found to be very small as compared to known thermoelectric materials. For instance, our highest computed ZT value is 0.11 for p-type KCuO2 along the c-direction at 750 K, 0.15 for p-type RbCuO2 and 0.25 for p-type CsCuO2 along the a-direction at 800 K. These small ZT values are caused by large values of the lattice thermal conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.