Abstract

The potential energy surfaces for the La+SCO and La++ SCO reactions have been theoretically investigated by using the DFT (B3LYP/ECP/6-311+G(2d)) level of theory. Both ground and excited state potential energy surfaces (PES) are discussed. The present results show that the reaction mechanism is insertion mechanism both along the C-S and C-O bond activation branches, but the C-S bond activation is much more favorable in energy than the C-O bond activation. The reaction of La atom with SCO was shown to occur preferentially on the ground state (doublet) PES throughout the reaction process, and the experimentally observed species, have been explained according to the mechanisms revealed in this work. While for the reaction between La+ cation with SCO, it involves potential energy curve-crossing which dramatically affects reaction mechanism, and the crossing points (CPs) have been localized by the approach suggested by Yoshizawa et al. Due to the intersystem crossing existing in the reaction process of La+ with SCO, the products SLa+(η2CO) and OLa+(η2CS) may not form. This mechanism is different from that of La + SCO system. All our theoretical results not only support the existing conclusions inferred from early experiment, but also complement the pathway and mechanism for this reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call