Abstract
Due to their strong molecular hyperpolarizability, organic push–pull materials are gaining interest for nonlinear optical applications. We were able to characterize the intramolecular charge transfer and the distribution of the electron cloud within the molecular unit by exciting these materials under the influence of an electric field. The series products of conjugated monomers derived from acrylo–azobenzene containing in the para position the attracting groups (–H, –NO2, –COOC2H5, –SO3H and –COOH) exhibit good nonlinear optical activity. We computed the nonlinear optical characteristics of these compounds as well as exploiting the theoretical calculations of DFT and AM1 to determine their hyperpolarizabilities. Besides, we investigated the increase in hyperpolarizability in the push–pull model of organic compounds under the effect of the strength of attracting groups, the existence of the conjugated [Formula: see text]-electron and the azo bridge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.