Abstract

Experiments on 2-pyridone (2PY) [Y. Matsuda, T. Ebata, N. Mikami, J. Chem. Phys. 113 (2000) 573; J.A. Frey, R. Leist, C. Tanner, H.M. Frey, S. Leutwyler, J. Chem. Phys. 125 (2006) 114308] have revealed that specific vibrational bands in the laser-induced fluorescence spectrum are missing in comparison to the fluorescence depletion spectrum. The possibility of mode-induced non-radiative decay has been raised in order to explain the effect. In the present work, this hypothesis is tested by an extensive investigation of the excited-state energy surfaces of 2PY by means of multireference ab initio methods. Several conical intersections have been located and the paths connecting them to the minimum on the S 1 surface have been explored. Mixed quantum-classical dynamics simulations were used to estimate how the bias towards specific modes can modify the non-radiative decay rate. These investigations nicely confirm the proposed mode-induced non-radiative decay mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call