Abstract

With density functional theory-based simulations, we have investigated the binding of the amino acid glycine on two of the most prominent diamond surfaces, that is, C(100) and C(111) (2 × 1), with a focus on the associated energetics, charge transfer, electronic, and structural characteristics. With regards to the dimerized C(100) surface, interaction is mostly via the amino group of the glycine molecule (both with and without H-atom abstraction) or the hydroxyl group with the loss of an associated H-atom. Barriers for these and other reactions were estimated with quantum chemistry methods. In contrast, the C(111) (2 × 1) surface was found to be mostly inert with respect to interactions with the glycine molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.