Abstract

The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHandHLYP, wB97X-D and M06-2X) with the aug-cc-pVTZ basis set. We found that the single-point CCSD(T)-F12A/VDZ-F12 energies calculated at the different DFT geometries had very similar barrier heights. The wB97X-D, M06-2X and CCSD(T)-F12A/VDZ-F12 barrier heights are comparable. The atmospheric decomposition of the MBO331 peroxy radical was found to undergo a 1,5-CH H-shift reaction with a reaction rate constant of about 1s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.